
Electronic excitations investigated by inelastic x-ray scattering spectroscopy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 7557

(http://iopscience.iop.org/0953-8984/13/34/307)

Download details:

IP Address: 171.66.16.238

The article was downloaded on 17/05/2010 at 04:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/13/34
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 13 (2001) 7557–7591 PII: S0953-8984(01)24031-4

Electronic excitations investigated by inelastic x-ray
scattering spectroscopy

W Schülke

Institute of Physics, University of Dortmund, D-44221 Dortmund, Germany

E-mail: schuelke@physik.uni-dortmund.de

Received 18 April 2001
Published 9 August 2001
Online at stacks.iop.org/JPhysCM/13/7557

Abstract
It is shown how non-resonant and resonant inelastic x-ray scattering
spectroscopy (IXSS) offer valuable information about electronic excitations
in solids. After a presentation of the basic relations, applications of IXSS on a
large variety of systems and electronic excitations are discussed, where in most
cases synchrotron radiation is utilized

1. Introduction

It was first pointed out by Nozieres and Pines [1] that the spectral analysis of inelastically
scattered x-rays can give valuable information about the frequency and wavevector-dependent
response function as defined by electronic excitations of the scattering system. Decisive for
developing this x-ray technique was the advantage of inelastic x-ray scattering spectroscopy
(IXSS) over electron energy loss spectroscopy (EELS) which is due to a much smaller
contribution of multiple scattering of the former, especially for larger momentum transfer.
First experiments on simple low-Z metals, still performed with conventional x-ray sources,
were mainly devoted to the measurement of the dispersion of the plasmon loss [2–4] or to
the demonstration of the role of Coulomb correlation in the response function [5]. However,
there also came up studies of the dynamic structure factor S(q, ω) in the region of intermediate
momentum transfer q [6–10]. The detection of a two-peak or multi-peak fine structure of
S(q, ω) and its interpretation by Platzman and Eisenberger [6] as an indication of an incipient
Wigner electron lattice prompted much theoretical work on the dynamic structure of electrons
in nearly homogeneous systems, the state of which in the mid 1980s was reviewed in [11], at the
time when synchrotron radiation was used for the first time for measurements of the dynamic
structure factor of simple metals [12]. Already a while before, however, Eisenberger et al
[13, 14] utilized for the first time synchrotron radiation in a resonant inelastic x-ray scattering
experiment, where the shift of an x-ray emission line was observed, which occurs when the
excitation energy approaches the core excitation threshold (today designated by Raman shift).
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In what follows, a review of all aspects of IXSS with synchrotron radiation is presented
as far as the investigation of electronic excitations is concerned. (Therefore, the so-called
Compton regime of inelastic x-ray scattering is excepted, since, within the limits of the impulse
approximation, this regime provides information about ground-state properties of the scattering
electron system rather than about excitations.)

In section 2 non-resonant IXSS is reviewed starting with some basic relations
(subsection 2.1) followed by several aspects of the dynamic structure factor of electrons in
simple metals and s–p-bonded semiconductors: plasmons and the transition to the particle–
hole continuum (subsection 2.2); band structure effects of IXS spectra (subsection 2.3); core
excitation in IXSS (subsection 2.4); interpretation of IXS spectra going beyond the random
phase approximation (subsection 2.5).

Section 3 is devoted to a particular variant of non-resonant inelastic x-ray scattering,
where the initial photon state is a wave field consisting of two coherently superimposed
plane waves. We call this variant coherent inelastic x-ray scattering spectroscopy (CIXSS).
Subsection 3.1 introduces the basics, especially the peculiarities of off-diagonal response,
which can be investigated by means of CIXSS. Subsection 3.2 shows how the information
about off-diagonal response can be obtained experimentally, and subsection 3.3 deals with the
investigation of the plasmon band structure by means of CIXSS; subsection 3.4 shows how
the superposition of excitations into the quasi-particle continuum with excitation of Umklapp-
plasmon bands give rise to so-called plasmon Fano resonances seen in the IXS spectra of Si
and Li.

Finally section 4 presents a review of resonant inelastic x-ray scattering spectroscopy
(RIXSS). After some basics in subsection 4.1, applications to investigations of electronic
excitations are shown. In subsection 4.2 some applications of core-level RIXS spectra are
demonstrated. The next subsections 4.3 and 4.4 show how the coherence between the
absorption and re-emission processes via the intermediate state in RIXSS and the corresponding
conservation rules of momentum and spin lead to Bloch-k- and spin-selective spectroscopies,
respectively. A special subsection 4.5 presents most recent results, where shakeup processes
in the intermediate state of RIXSS can present valuable information about electronic excitation
processes in new materials, which are otherwise hardly obtainable.

2. Non-resonant inelastic x-ray scattering

2.1. Basic relations

Neglecting contributions of off-diagonal response (see subsection 3.1) the double differential
scattering cross section (DDCS) of non-resonant IXSS is given by [15]

d2σ/d	 dω = (dσ/d	)T hS(q, ω) (2.1)

where (dσ/d	)T h is the Thomson cross section andS(q, ω) the dynamic structure factor, which
contains the information about electronic excitations via the imaginary part of the dielectric
response function 1/ε(q, ω):

S(q, ω) = (−h̄q2/4π2e2n)Im [1/ε(q, ω)] (2.2)

where q is the momentum and h̄ω the energy transferred to the scattering system in the inelastic
scattering process, and n the electron density of the scattering system. The dielectric response
function is directly related to the polarization function χ(q, ω)

1/ε(q, ω) = 1 + v(q)χ(q, ω) v(q) = 4πe2/q2 (2.3)
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where χ(q, ω) connects the Fourier transformed induced charge nind(q, ω) with the Fourier
transform of the external potential φext (q, ω):

nind(q, ω) = −eχ(q, ω)φext (q, ω). (2.4)

The basic ingredient of the polarization function is the so-called Lindhard [16] polarization
function χ0(q, ω), which describes the polarization of an homogeneous electron system by
taking into account all single-particle excitation processes (particle–hole excitations) mediated
by the momentum transfer q, assuming they are allowed by Pauli’s principle, but neglecting
both the interaction of the particle and the hole with the surrounding electron fluid as well as
any interaction between the particle and the hole left behind, so that χ0(q, ω) reads

χ0(q, ω) = 2 lim
η→+0

∑
k

[f (εk)− f (εk+q)]/(h̄ω + εk − εk+q + iη) (2.5)

where f (εk) is the Fermi function and εk is the free electron kinetic energy h̄2k2/2m.
Equation (2.5) can also be written in terms of ‘undressed’ one-particle Green’s functions:

χ0(q, ω) = 2
∫
(dε/2π i)

∫
(d3k/8π3)G0(k, ε)G0(k + q, ε + ω) (2.6)

so that χ0(q, ω) can be represented by the very instructive and compact diagram of figure 1.
The ‘undressed’ Green’s function G0(k, ε) is given by

G0(k, ε) = �<(k)/(ε − εk − iη) +�>(k)/(ε − εk + iη) η → +0 (2.7)

�<(k)

{
1 for k � kF
0 for k > kF

kF = Fermi momentum (2.8)

�>(k) = 1 −�<(k).

Figure 1. Diagram representing the Lindhard polarization function. The propagators are
‘undressed’ one-particle Green’s functions.

A first step of approximating the polarization function in terms of the Lindhard χ0(q, ω)

is the so-called random phase approximation (RPA), where in (2.4) χ(q, ω) is replaced by
χ0(q, ω) and φext (q, ω) is replaced by φext (q, ω) + v(q)nind(q, ω), so that, additionally to
the external potential φext (q, ω), the potential due to the induced polarization also acts on the
system:

nind(q, ω) = −eχ0(q, ω)[φext (q, ω) + v(q)nind(q, ω)] (2.9)

nind(q, ω) = −e{χ0(q, ω)[1 − v(q)χ0(q, ω)]}φext (q, ω) (2.10)

χRPA(q, ω) = χ0(q, ω)/[1 − v(q)χ0(q, ω)] (2.11)
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and according to (2.3)

1/εRPA(q, ω) = 1 + v(q)χRPA(q, ω) (2.12)

and by inserting (2.11)

εRPA(q, ω) = 1 − v(q)χ0(q, ω) (2.13)

so that the dynamic structure factor within the limits of the RPA, SRPA(q, ω), is determined
by

SRPA(q, ω) = (−h̄q2/4π2e2n)Im [1/εRPA(q, ω)]

= (h̄q2/4π2e2n)Im [εRPA(q, ω)]/|εRPA(q, ω)|2. (2.14)

In what follows this relation and further improvements of the RPA will be used to understand the
dynamic structure of simple metals and s–p-bound semiconductors as obtained by synchrotron
radiation based measurements.

Figure 2. Measured dynamic structure factor S(q, ω) of Al metal for q ‖ [100] and different values
of q as indicated.

2.2. Plasmons and transition to the particle–hole continuum

Figure 2 shows the structure factor S(q, ω) of Al for q ‖ [100] for different values of q as
obtained with monochromatized synchrotron radiation (7.99 keV) from the DORIS storage
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Figure 3. Upper panel: Real (εr ) and imaginary (εi ) part of the RPA dielectric function εRPA(q, ω)
for q < qc , q = qc and q > qc . Lower panel: Corresponding imaginary part of −ε−1

RPA(q, ω).

ring using energy analysis of scattered radiation in inverse geometry, overall energy resolution
1.6 eV [17]. The transition from a very sharp structure for q < 0.8 a.u. (a.u. = atomic units:
h̄ = e = m = 1) to a much broader one can be understood as a transition from plasmon
excitation to excitation into the particle–hole continuum by looking at figure 3, where for three
different values of q the real and imaginary parts of εRPA(q, ω) are shown, together with the
corresponding −Im [1/εRPA(q, ω)] ∼ S(q, ω). A sharp structure of S(q, ω) originates at
that frequency ωp (plasma frequency), where Re [εRPA(q, ω)] has a zero passage and where
simultaneously also Im [εRPA(q, ω)] is nearly equal to zero, both necessary conditions for the
plasma oscillation of the electron system to be a good (nearly undamped) elementary excitation
[18]. This behaviour exists up to the so-called critical momentum transfer qc, where the zero
passage of Re [εRPA(q, ω)] just coincides with the high-ω edge of Im [εRPA(q, ω)]. Within
the region q < qc, the q-dependence of the S(q, ω) peak position can be utilized to meausre
the plasmon dispersion ωp(q), as done with IXSS for Li [3, 11, 19] and Be [4], although those
investigations are the domain of EELS [20], since the differential cross section for electron
scattering goes like q−2. For q > qc the plasmons can decay into particle–hole excitations.
Thus they become strongly damped. Now particle–hole excitations, which cover a broad ω-
continuum, dominate the dynamic structure factor. The same behaviour has been found for Li
[3, 11, 19], Be [4, 21] and Na [19].

It is a unique domain of IXSS to investigate the plasmon dispersion of liquid metals, as
has been done by Hills et al [19] for Li and Na and by Sternemann et al for Al [22]. Both
papers come to the conclusion that the plasmon dispersion exhibits a jump at the melting
temperature, which can simply be explained by expansion upon melting and the consequent
reduction in density. But, more importantly, the deviation of the plasmon dispersion from the
RPA prediction for a homogeneous electron gas, which is attributed to interband transitions
[23], does not change upon melting. Therefore, it must be concluded that the short-range ionic
correlations of a liquid are sufficient to produce a packing comparable with that of a solid, at
least on a length scale probed by a plasmon.
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2.3. Band structure effects of S(q, ω)

2.3.1. Excitation gap induced fine structure. The relation (2.5) for the Lindhard polarization
function χ0(q, ω) can be modified such that band structure effects are also admitted. The
summation over k in (2.5) has to be replaced by a summation over the reduced Bloch
wavevectors k and over the bands with index ν. Whereas in (2.5) the momentum transfer q

allows only transitions from a free electron state with momentum k into a state with momentum
k + q, now the probability for a transition from a Bloch state |k, ν〉 into another state |k′, ν ′〉
is regulated by the square of the matrix element 〈k′, ν ′| exp(iq · r)|kν〉, so that interband
transitions also come into play. Therefore, one has to sum additionally over k′ and ν ′, thus
ending up with the well known Ehrenreich–Cohen [24] self-consistent field expression for the
polarization function, χsc(q, ω), which is equivalent to the Lindhard expression χ0(q, ω) and
can replace it in the expression (2.11) for the RPA polarization function:

χsc(q, ω) =
∑
k,ν
k′,ν ′

|〈k′ν ′| exp(iq · r)|kν〉|2[f (k′, ν ′)− f (k, ν)]

/[h̄ω + E(k, ν)− E(k′, ν ′) + iη] (2.15)

where E(k, ν) is the energy and f (k, ν) the occupation number of the one-electron Bloch
state |k, ν〉. The imaginary part of χsc(q, ω)

Im χsc(q, ω) = π
∑
k,ν
k′,ν ′

|〈k′ν ′| exp(iq · r)|kν〉|2[f (k, ν)

−f (k′, ν ′)]δ[h̄ω + E(k, ν)− E(k′, ν ′)] (2.16)

is then directly related to the combined density of occupied and unoccupied states via the
energy conserving δ-function: δ[h̄ω + E(k, ν)− E(k′, ν ′)].

The most prominent structure of S(q, ω), at least for simple metals and s–p-bounded
semiconductors, which arises by ion–electron interaction in crystalline solids, can be traced
back to excitation gaps for final states on Bragg planes [25] in the extended zone scheme,
perpendicular to q. Within the limits of the so-called empty lattice model (neglecting the
periodic lattice potential), final states on the Bragg planes belonging to different bands ν and
ν ′ are degenerate and contribute to the same energy transfer ω. When the periodic potential is
switched on, this degeneracy may be removed, so that an energy gap is opened, which leads
to a corresponding excitation gap in the combined density of states. According to (2.15),
this excitation gap is also present in Im χsc(q, ω) and consequently in εi ≡ Im εRPA(q, ω),
although this gap can be filled to a certain extent by other transitions. As shown in figure 4, a gap
in εi can produce, via the Kramers–Kronig relation, an additional zero of εr ≡ Re εRPA(q, ω)
or at least a strong minimum, which should give rise to a strong peak in −Im [1/εRPA(q, ω)]
according to (2.14). Such a peak, if due to an additional zero of εi , can be interpreted as a new
collective mode, the so-called zone-boundary collective state (ZBCS), first introduced by Foo
and Hopfield [26] and thoroughly discussed by Sturm and Oliveira [27] for Al. Even if there
is no strong peak in −Im [1/εRPA(q, ω)] due to a zero or nearly zero of εr , the excitation gap
is prominent by its dip in εi .

Excitation gap induced fine structure of S(q, ω) for q > qc was first found in IXS spectra
of Li by Schülke et al [11] and discussed on the basis of a pseudopotential band structure
calculation of S(q, ω). The peak structure of S(q, ω) around 10 eV, as shown in figure 5, can
be directly traced back to an excitation gap opened by the potential coefficient V200 for final
states on the g200–Bragg plane. A ZBCS-like peak structure due to the g110–Bragg plane of Li
and its dispersion was also investigated by Schülke et al and with 40 meV resolution by the
Burkel group [28]. A peak–dip or dip structure in S(q, ω) was found in an IXSS experiment
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Figure 4. Quasi-excitation gap in the imaginary part εi of the RPA dielectric function of Li:
q‖g200, q = 0.77 a.u., according to a local empirical pseudopotential calculation, together with
the corresponding real part εr and the loss function −Im [ε−1(q, ω)].

also for Be [21, 29] and was interpreted by pseudopotential calculations as being induced
by band structure related excitation gaps. As shown in [29] by means of Kramers–Kronig
analysis of the experimental data, the q ‖ [100] spectra of Be for q = 0.77 a.u. exhibit a
very pronounced peak, which can be attributed to a zero-passage of εr for q > qc, and must
therefore be considered as a pure ZBCS. The interpretation of the S(q, ω) fine structure of
Be on the basis of Bragg-plane induced excitation gaps in [21, 29] found full confirmation by
ab initio band structure calculations of the dynamic response of Be performed by Maddocks
et al [30]. Also very early band structure calculations of the Be dielectric response function
for q ‖ [001] within the RPA by Taut and Hanke [31] have revealed peak positions all in
agreement with the experiment.

The situation with Al is somewhat more puzzling. Early IXSS experiments on Al by
Platzman and Eisenberger [6] and their repetition with synchrotron radiation [32] revealed a
fine structure (peak shoulder with a dip in between) of S(q, ω) for q = 1.7kF , which seems
to be q-orientation independent and was attributed in [32] to self-energy effects within the
jellium model as calculated ‘on the shell’ by Múkhopadhyay et al [33] in spite of the fact
that Ng and Dabrowski [34] have put forward a fundamental objection against the application
of the ‘on-shell’ approximation. Schülke et al have interpreted the same fine structure they
have found in their IXS spectra of Al [17], and which indeed turned out to be q-orientation
independent, as being induced by band structure effects, where the dip of this fine structure
could not be attributed to only one Bragg plane but interpreted as a consequence of a downshift
of d-like unoccupied bands as predicted by Ojala [35]. Band structure S(q, ω) calculations of
Al performed by Maddocks et al [36] and Fleszar et al [37], both using the time-dependent
local density approximation (TDLDA), have clearly revealed this fine structure and have given
convincing arguments for their band structure origin. In [36] this fine structure is explicitly
assigned to (330) and (040) Bragg planes, so that its q-orientation independence becomes
understandable. A further hint at the band structure origin of this fine structure has been
delivered by Sternemann et al [22] by investigating its temperature dependence. The stepwise
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Figure 5. Measured dynamic structure factor S(q, ω) (points) of Li for q ‖ [100] compared with
local empirical pseudopotential calculations; qc = 0.46 a.u.

vanishing of this fine structure with increasing temperature over the melting point is explained
as a consequence of a Debye–Waller factor acting on the potential coefficients responsible for
the appearance of this structure. Moreover, Maddocks et al [36] have found another strongly
orientation-dependent dip assigned to a (220) Bragg plane for q ‖ [110] which has also been
notified in the IXS spectra of Schülke et al [17] for the same q-direction. This must be
considered as a strong argument in favour of band structure induced fine structure of S(q, ω)
in a nearly free electron metal such as Al. Finally the IXSS measurements on Si [38] should
be mentioned, where an excitation gap fine structure was found for q ‖ [100] and could be
interpreted as being due to the (220) Bragg plane.

2.3.2. Momentum and energy width of band gaps. The band gap between the valence and
conduction band of semiconductors or insulators can also be investigated by IXSS, as shown
most recently by Caliebe et al [39] in a study on diamond and LiF. This study demonstrates
that IXSS can determine the energy width of the gap and, in the case of an indirect gap,
also its relative momentum, which is not possible with the conventional optical absorption
or reflectivity measurements, since those experiments cannot determine the momentum of
the phonon, necessary to observe the indirect gap. Figure 6 shows experimental data of
−Im [1/ε(q, ω)] of diamond near the band gap as a function of momentum transfer in the -X
direction along with corresponding calculations, where the full curves take into account the
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Figure 6. Loss function −Im [ε−1(q, ω)] of diamond near the band gap as a function of
momentum transfer in the -X direction. Open squares, experimental data; full curve, calculation
including electron–hole interaction in the final state; dashed curve, calculation without electron–
hole interaction.

electron–hole interaction (see subsection 2.2.4) and the dashed curves do not [39]. One can
clearly see that the gap of 5.5 eV (the minimum of the first rise) is not observed at q = 0.64-X,
as predicted by theory (0.75-X), but at 1.34-X, which is q ≈ −0.64-X + 2-X, where 2-X
is the corresponding reciprocal lattice vector. This behaviour can be explained by taking into
account the symmetry of the wavefunction at the valence band maximum and at the conduction
band minimum, when calculating the matrix elements in (2.16).

The authors of this study stressed the point that with the availability of synchrotron
radiation of fourth generation sources the full information (energy and momentum) about much
smaller gaps, as for instance in high-Tc superconductors, should also be feasible although not
easy.

2.3.3. Combined density of states (DOS). According to (2.16), each measurement of S(q, ω),
done within the range of particle–hole excitation, should give information about the combined
density of states (δ-function in (2.16)), of course weighted by the corresponding matrix
elements. However, this general property then only leads to pronounced structures of S(q, ω),
when the energy difference between the conduction band E(k′, ν ′) and the valence band
E(k, ν) in the δ-function of (2.16) is nearly constant over a wide range of k, where k′ = k+q+g

and g reduces k + q into the first Brillouin zone. Such a case was utilized by Schülke et al
[40, 41] both to get information about the so-called interlayer conduction band state of graphite
[42], the existence of which was difficult to prove with other spectroscopies, and to demonstrate
the shift of the interlayer state upon lithium intercalation. Figure 7 shows the IXS spectra of



7566 W Schülke

Figure 7. (a) Measured dynamic structure factor S(q, ω) of HOPG and LiC6. (b) Corresponding
real part, ε1(q, ω) (dashed curve) and imaginary part ε2(q, ω) (full curve) of the dielectric function.

highly oriented pyrolytic graphite (HOPG) and of Li-intercalated HOPG, LiC6, for q‖c-axis,
q = 0.59 a.u., together with the corresponding real, ε1(q, ω), and imaginary part, ε2(q, ω),
of the dielectric function as obtained by Kramers–Kronig analysis of the experimental data.
A part of the first peak in the spectra can be attributed, according to selection rules (see the
matrix elements in (2.16)), to perpendicular transitions between the π -type valence bands and
the σ -type interlayer conduction band, which are nearly parallel over a large range of k ⊥ c-
axis. One clearly sees a shift of this structure upon intercalation. This shift is interpreted as
being due to a corresponding non-rigid band shift of the interlayer state to lower energies as
a consequence of strong hybridization with the Li metal 2s band [43]. A similar study was
performed on potassium intercalated graphite KC8 [44].

2.4. Core excitation with IXSS

It was first pointed out by Mizuno and Ohmura [45] and later by Nagasawa et al [46] that the
core excitation part of the IXS spectra also contains very useful information about the density
of unoccupied and core excitonic states. Since the energy transfer h̄ω for core excitations is
much larger than the Fermi energy, |εRPA(q, ω)| ≈ 1 for this range of ω, so that, according to
(2.14) and (2.16), SRPA(q, ω) reads as follows:

SRPA(q, ω) = (h̄q2/4πe2n)
∑
k′,ν ′

|〈k′ν ′| exp(iq · r)|c〉|2δ[h̄ω + Ec − E(k′, ν ′)] (2.17)

where |c〉 is the core state with energy Ec. If qa < 1, where a is the orbital radius of the core
state, the matrix element of (2.17) reduces to the dipole matrix element 〈k′ν ′|r|c〉, and one
ends up with

SRPA(q, ω) = (h̄q2/4πe2n)

{
q ·

∑
k′,ν ′

|〈k′ν ′|r|c〉|2δ[h̄ω + Ec − E(k′, ν ′)] · q

}
(2.18)
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an expression which is equivalent to the cross section of absorption spectroscopy, if one replaces
q by the polarization vector e of the absorbed photon. The equivalence between absorption
spectroscopy and IXSS was first emphasized in a theoretical study by Mizuno and Ohmura [45]
and demonstrated experimentally in [46] by comparing Li and Be core excited IXS spectra with
corresponding soft x-ray absorption spectra. Moreover, the strong q-orientation dependence
of core excited IXSS has been illustrated on HOPG [40].

Therefore, one can obtain, by core excitation IXSS, the same information about the
scattering system as in absorption spectroscopy, where the scattering vector q replaces the
polarization vector e, but with the clear advantage that this information is obtainable with hard
x-rays investigating core excitations in the 10–300 eV range. Investigations of the near-edge
x-ray absorption fine structure (NEXAFS) and of the extended x-ray absorption fine structure
(EXAFS) of low-Z elements with 10–20 keV x-rays become feasible. This was utilized first
by Tohji and Udagawa [47] to obtain and to evaluate EXAFS oscillations in graphite. The fine
structure of IXS spectra near the Li–K edge in Li intercalated graphite, LiC6, for q parallel and
perpendicular to the axis [48] has been utilized to find the energy position and the symmetry
of van-Hove singularities of the unoccupied KC8 band structure as calculated by Holzwarth
et al [49], where the so-called interlayer states experience emphasis because of their strong
overlap with the Li sites.

Most recently the above-mentioned advantages of core excitation IXSS were utilized in
a NEXAFS/EXAFS study of liquid water and ice (Ih) by investigating the O–K edge [50].
The partial distribution function of liquid water was found to be in good agreement with that
obtained from elastic neutron scattering. In the near-edge region distinct differences between
solid and liquid can be traced back to differences in the local structure and the electronic
environment of the oxygen atoms. Schell et al [51] demonstrated the potential of core excitation
IXSS by investigating the K-edge spectra of solid hcp 4He at 4.3 K and 61.5 MPa. They were
able to find for the first time the energy position of the Frenkel-type exciton of atomic parentage
related to the transition 1 1S0 → 2 1P1 in the solid state.

The transition from the qa < 1 range (dipole approximation) to the qa > 1 range,
where either monopole or higher than dipole contributions should come into play, has been
investigated by Krisch et al [52] and Nagasawa et al [53]. In both studies, core excitation
IXS spectra near the Li–K edge are shown. In [52], as shown in figure 8, the comparison
of the spectrum at qa = 0.176 with the p-partial DOS demonstrates the predominance of
the dipole transition, whereas the spectrum at qa = 1.95, together with the s-partial DOS,
clearly shows the major contribution of the monopole transition. The high-energy resolution
available (ESRF undulator beamline ID16) enabled the authors to fit their experiments to the
Mahan, Nozieres and DeDominicis theory [54], so that the angular-dependent parameters α0

and α1 were obtained, in good agreement with calculations of Girvin and Hopfield [55]. Thus
the long-standing problem of the many-body theory could be solved. In the study [53] the
more extended near-edge structure was investigated when passing over from the qa < 1 to the
qa > 1 range. Several models were tested.

2.5. Going beyond RPA

The plasmon features as well as the fine structure of S(q, ω) due to band structure effects
discussed so far could well be explained within the limits of the RPA at least as far as their
energy position is concerned. However, it turned out very early on that the overall shapes of the
experimental IXS spectra, especially for q > qc, are far from being described adequately by
the RPA. Therefore, more sophisticated corrections to the RPA are necessary. Without going
through the huge amount of theoretical literature devoted to this problem (reviewed to a large
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Figure 8. (a) Upper panel: 1s-core excitation IXS spectrum of Li for q = 0.465 a.u. Lower
panel: Dashed curve, p-partial DOS; full curve, unoccupied p-partial DOS convoluted with the
experimental resolution. (b) Upper panel: 1s-core excitation IXS spectrum of Li for q = 5.148 a.u.
Lower panel: Dashed curve, s-partial DOS; full curve: unoccupied s-partial DOS convoluted with
the experimental resolution.

extent in [11]), one can say that two corrections of the simple diagram (bubble) of figure 1 are
the most important ones. One correction consists in taking into account the fact that the excited
particle or hole can polarize the electron fluid surrounding it, so that this polarization can act
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back on the particle or hole thus modifying the particle/hole propagator. Formally this type of
reaction is expressed for the jellium case in the so-called self-energy, a complex function of
momentum k and energy E given by [56]

0(k, E) = [i/(2π)4]
∫
v(k′) d3k′

∫
exp(−iηE′) dE′/[εRPA(k′, E′)(E − E′ − εk−k′)]

η → +0 (2.19)

if the dynamic screening of the Coulomb interaction is performed via the RPA response
function. Allowing for this self-energy, the simple one-particle picture, where the free particle
is represented by its momentum and the corresponding kinetic energy εk, must be modified
into a quasi-particle picture, dominated by the so-called spectral density function A(k, E),
which expresses for positive (negative) energies E the relative probability per energy unit for
the system to be in a state with an energy E + µ (−E − µ) above the ground state just after
the injection of one electron (hole) of momentum k (µ is the chemical potential) [57]. The
spectral density function is connected to the self-energy by

A(k, E) = −(1/π)Im0(k, E)/{[E − εk − Re0(k, E)]2 + [Im0(k, E)]2} (2.20)

so that the imaginary part of the self-energy stands for a broadening of the spectral density
function, which is connected with the finite lifetime of the quasi-particle, and the real part
of the self-energy characterizes the energy shift relative to the free particle kinetic energy εk.
Thus the definition of the Green’s function given in (2.7) must be changed accordingly into

G(k, ε) = (1/2π)
{ EF∑

−∞
dEA(k, E)/[ε − E − iη] +

∫ ∞

EF

dEA(k, E)/[ε − E + iη]

}
. (2.21)

If we replace the ‘undressed’ Green’s function in the expression (2.6) for the Lindhard
polarization function by the self-energy corrected Green’s function (2.21) (often designated
as fully ‘dressed’ propagator) we will speak of the fully self-energy corrected polarization
function χSE(q, ω).

One can easily show that the imaginary part of χSE(q, ω) is then given by folding the
spectral density of the particle with that of the hole left behind:

Im χSE(q, ω) = −
∫
(d3k/8π3)

∫ EF

−ω+EF

(dE/2π)A(k, E)A(k + q, E + ω). (2.22)

If one neglects the real part of the self-energy and interprets the ‘on-shell’ imaginary part of
the self-energy, -/2 ≡ Im0(k, εk), as the inverse lifetime of the particle with momentum
k, one can insert i-/2 into the energy denominator of (2.7). This approximation is called
the quasi-particle lifetime model [58], and, in spite of the rather crude approximation, it has
been shown in a number of studies that it can bring the calculation nearer to the experiment,
when compared with the pure RPA. This has been demonstrated in [11, 17, 22, 33, 38]. In
contrast, the exclusive application of the full self-energy correction does not lead to a better
agreement with experiment in comparison with RPA [22], and demonstrated in figure 9, where
the measured dynamic structure factor of Li [11] for q ≈ 2kF is set against a jellium calculation
which includes the full self-energy correction. This is mainly due to the two-peak structure
of the hole spectral density function with a so-called plasmaron peak shifted to lower energies
against the quasi-hole peak by more than the plasmon energy, as first shown by Lundqvist [59],
and discussed in relation to the dynamic structure factor by Ng and Dabrowski [34].

There must exist another correction [60], which acts against the self-energy correction,
namely the so-called vertex correction, which takes into account the particle–hole Coulomb
interaction dynamically screened by the polarization of the surrounding electron liquid and
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Figure 9. Dynamic structure factor of Li with q = 1.99kF . Full squares: experiment with
q ‖ [111], normalized according to the f -sum rule [11]; short dashed curve, jellium calculation
including full self-energy correction performed by means of a cumulant expansion [63]; dashed
curves, jellium calculation, fully self-energy corrected and vertex correction to first and second
order in the screened Coulomb interaction, respectively; full curve with full circles, jellium
calculation, fully self-energy corrected and vertex corrected to the fifth order in the screened
Coulomb interaction; full curve, jellium calculation within RPA without self-energy and vertex
correction.

Figure 10. Diagrams representing the first-order vertex correction of the fully self-energy corrected
polarization function. The propagators are ‘dressed’ one-particle Green’s functions.

which is, to first order in the Coulomb interaction, diagrammatically shown in figure 10. The
corresponding expression of the first-order vertex correction to χSE(q, ω) reads as follows:

2vertl χ(q, ω) = −2
∫

d3k/(8π3)

∫
dε/(2π i)G(k, ε)G(k + q, ε + ω)

∫
d3k′/(8π3)

×
∫

dε′/(2π i)[v(k′ − k)/εRPA(k
′ − k, ε′ − ε)]G(k′, ε′)G(k′ + q, ε′ + ω).

(2.23)
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It has been shown by Sternemann et al [61] in a Li IXSS experiment that, at least for q > 2kF ,
this first-order vertex correction not only cancels the self-energy correction, but brings the
calculation in good agreement with experiment. A cancellation of this type has been discussed
explicitly for the case of optical absorption by Beeferman and Ehrenreich [62] and for the
dynamic structure factor by Green et al [58]. However, allowing for the vertex correction to
higher orders in the screened Coulomb potential (simply by adding further virtual plasmon
exchange channels into the polarization ‘bubble’ of figure 1) leads also for q ≈ 2kF to a rather
good agreement with the experiment, as shown in figure 9 for Li, provided that the spectral
density function of (2.20), as used in (2.21), is replaced by one obtained by means of a cumulant
expansion treatment [63]. The position of the main peak at 11.5 eV is well reproduced and
the tail of the spectrum between 36 and 52 eV, in particular, is in perfect agreement with the
experiment. The latter agreement was also found by Sturm and Gusarov [64] for the case of Al
using a diagrammatic expansion of the polarization function as proposed by Geldart and Vosko
[65]. Of course, diagrams of the above-mentioned type are not the only ones contributing to the
polarization function (see for further diagrams [58]), so that a full agreement with experiment
cannot be expected. The shoulder around 19.5 eV in the experimental spectrum could be
attributed to lattice effects comparable with the Al case [17, 36, 37].

If one replaces the screened Coulomb interaction [. . .] in (2.23) formally byG(q, ω)v(q),
the vertex correction to all orders of the Coulomb potential can be summed up in a geometrical
series, ending up with the so-called local-field corrected polarization function

χLF (q, ω) = χSE(q, ω)/[1 +G(q, ω)v(q)χSE(q, ω)] (2.24)

where the complex function G(q, ω) should be designated as dynamic local-field correction
function (LFCF), whose static approximation was first introduced by Hubbard [66]. A great
deal of theoretical work has been invested in finding expressions of the static LFCF G(q, 0)
for homogeneous systems, reviewed by Kugler [67]. An analytical expression for G(q, 0),
which is widely used in the literature, has been provided by Utsumi and Ichimaru [68]. It
has been shown in [11, 17, 22, 38] that by using these expressions for G(q, 0), together with
the quasi-particle lifetime model, one gets, at least for q � kF , good agreement between the
overall shape of the experimental IXS spectra and the corresponding calculations. For larger q,
a deviation came up, so it was natural to use (2.24) to fitG(q, ω) to the experiment. The result
of such a fit, performed by Schülke et al [69], is presented in figure 11, where ω̄ in the argument
of G denotes the centre of a frequency range ω̄ ± 2ω chosen for the fit. The fitted LFCF is
compared with theoretical values both of [68] and of Farid et al [70] using different values
for the renormalization constant z [18]. Another approach to implementing the local-field
correction for the case of Al into calculations of the polarization function, when band structure
effects should be taken into account, was chosen by Maddocks et al [36] and Fleszar et al [37].
These authors have shown that application of TDLDA is equivalent to making a static local-
field correction. Indeed, by using this scheme, the authors could get a much better agreement
with experiment than with RPA. Larson et al [71] have carried on these studies and found
out that for q > kF agreement with experiment could only be obtained by fitting empirical
LFCFs to the experimental data ending up with values comparable with that of [69]. Finally it
should be mentioned that Benedict and Shirley [72] have introduced a first-principle scheme
to calculate the dielectric response of insulators, which includes the electron–hole interaction,
where the effective Hamiltonian for electron–hole pairs contains both the exchange and the
direct part of this interaction. It was shown in [39] that the application of this scheme to LiF and
diamond leads to much better agreement with experiment when compared with calculations
which neglect electron–hole interactions.
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Figure 11. (a) Real and imaginary parts of the LFCF G(q, ω): data points represent real and
imaginary parts of Gexp(q, ω̄) as fitted, within a certain range around ω̄ to the experiment; lines
represent Gtheor (q, 0) according to different approaches as indicated. (b) Frequency range of fit.

3. Non-resonant IXSS, off-diagonal response

3.1. Basic relations

The relation (2.4), which defines the polarization functionχ(q, ω) for an homogeneous electron
system, must be modified if we fully take into account the lattice translational symmetry, so
that the electron density can be expanded into the following Fourier series:

n(r) =
∑

g

n(g) exp(ir · g). (3.1)

Doing so has the consequence that a Fourier component of the external potential,
φext (qr + g′, ω), can also induce density fluctuations belonging to another reciprocal lattice
vector g, where qr reduces the wavevector q into the first Brillouin zone according to

q = qr + g′. (3.2)

In this way the polarization function changes into a (g, g′)-matrix, defined by [69, 70]

nind(qr + ω) = −eχ(qr + g, qr + g′, ω)φext (qr + g′, ω). (3.3)

According to (2.13) the RPA dielectric function changes into a dielectric matrix

ε(qr + g, qr + g′, ω) ≡ εgg′(qr, ω) = δgg′ + Tgg′ (3.4)
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where [73, 74]

Tgg′ = [8πe2/(g + q)2V ]
∑
k,ν
k′,ν ′

〈kν| exp[−i(q + g)] · r|k′ν ′〉〈k′ν ′| exp[i(q + g′) · r]k, ν〉

×[f (k′, ν ′)− f (k, ν)]/[h̄ω + E(k, ν)− E(k′, ν ′) + iη] η → +0. (3.5)

By performing an inelastic scattering experiment, where the scattering of a single plane wave
will transfer only one momentum q to the scattering electron system, the corresponding
macroscopic response function ε−1(q, ω) must read as follows:

ε−1(q, ω) = [εgg′(qr, ω)]
−1
g′g′ (3.6)

ε−1(q, ω) is directly related to the g′g′-diagonal element of the inverted dielectric matrix, so
that one can define a diagonal structure factor

S(qr + g′, ω) = [−h̄(qr + g′)2/4π2e2n]Im {[εgg′(qr, ω)]
−1
g′g′ } (3.7)

which replaces the RPA structure factor as given in (2.14). Speaking in terms of physical
intuition, one can express the diagonal response function as being proportional to the modulus
squared of a(qr + g′, ω),

−Im {[εgg′(qr, ω)]
−1
g′g′ } ∼ |a(qr + g′, ω)|2 (3.8)

where a(qr +g′, ω) is the probability amplitude to excite the system by transferring the energy
h̄ω and the momentum q = qr + g′.

Accordingly one can write down an off-diagonal structure factor

S(qr + g′, q + g, ω) = [−h̄(qr + g′)2/4π2e2n]Im {[εgg′(qr, ω)]
−1
gg′ } (3.9)

where the off-diagonal response function

−Im {[εgg′(qr, ω)]
−1
g′g′ } ∼ a(qr + g, ω)a∗(qr + g′, ω) (3.10)

is related to the product of two excitation probability amplitudes belonging to two different
transferred momenta, namely qr + g and qr + g′.

3.2. Experimental access to off-diagonal response

It has been shown by Schülke [75, 76] that one can get information about off-diagonal response
by performing an inelastic x-ray scattering experiment, where the incident photon state consists
of the coherent superposition of two plane waves with wavevector K0 and amplitude A0, on
the one hand, and another with wavevector Kh = K0 + g and amplitude Ah as sketched in
figure 12. If one observes the scattered radiation with wavevector K ′ and frequency ω′,
one has indeed two transferred momenta q0 = K0 − K ′ and qh = Kh − K ′. One can
easily show that the coherent coupling of these two incident plane wave components leads to a
corresponding coherent coupling (quantum interference) of the related excitation probability
amplitudes a(q0, ω) and a(qh, ω) according to the following expression for the DDCS either
in terms of the excitation probability amplitudes or in terms of the diagonal and off-diagonal
structure factors:

d2σ/d	 dω′ ∼ |A0|2|a(q0, ω)|2 + |Ah|2|a(qh, ω)|2
+A0A

∗
ha(q0, ω)a

∗(qh, ω) + A∗
0Aha

∗(q0, ω)a(qh, ω) (3.11)

d2σ/d	 dω′ ∼ (|A0|2 + |Ah|2)S(qr + g′, ω)|
+2|A0||Ah| cos(2φ)S(qr + g′, qr + g, ω). (3.12)

The last equation is written down for the special case that |q0| = |qh| and that q0 and qh are
symmetry equivalent. 2φ is the phase difference between the two plane wave components.
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Figure 12. Momentum transfer of an IXSS experiment using two coherently coupled incident
waves.

Figure 13. Experimental set-up for a CIXSS experiment: DCM = double crystal monochromator;
SS = scattering sample; SBCA = spherically bent crystal analyser; D1 = monitor detector;
D2 = detector of the analyser.

In a real experiment, as performed according to figure 13 on Si [77], the two plane waves are
components of the electric field as predicted by the dynamical theory of x-ray diffraction [78]
within the limits of the so-called two-beam case of diffraction. Their amplitudes A0, Ah and
also their mutual phase shift 2φ depend on the angular deviation 2θ from the exact Bragg
position, so that 2φ can be monitored by the Bragg-reflected intensity as shown in figure 13.
In particular 2φ goes from 0 to π , when turning the angular sample position by the Darwin
width, which is a few µrad, so that the quantum interference term in (3.11) and (3.12) changes
its sign. This enables us to extract the excitation probability amplitudes a(q0, ω) and a(qh, ω)
by measuring d2σ/d	 dω′ for a few angular positions of the sample within the Darwin width
and makes the basis of coherent inelastic x-ray scattering spectrocopy (CIXSS).
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Figure 14. Plasmon band gap at the BZB.

3.3. Measurement of the plasmon band gap

In [77] CIXSS has been applied to the problem of getting information about the plasmon band
gap of Si, as predicted by Saslow and Reiter [74], especially about the plasmon band gap
of Si at the g = (2π/a)(1, 1, 1) Brillouin zone boundary (BZB), whose magnitude has been
estimated [79, 80] to be proportional to n(g) (see equation (3.1)). If the plasmon band structure
at the BZB looks as shown in figure 14 (two-plasmon band model) the diagonal response part
of the DDCS for a momentum transfer q = g/2 is composed of two contributing squared
excitation amplitudes with energy ω1 and ω2, each for one plasmon band, according to

S(qr + g′, ω) = |a(qr + g′, ω)|2δ(ω − ω1(qr + g′)) + |a(qr + g′, ω)|2δ(ω − ω2(qr + g′)).
(3.13)

The off-diagonal response part of the DDCS (which can be separated from the diagonal part
as shown above) is composed of the two interference terms, one taken at ω = ω1, which is
positive, since the corresponding plasmon state is s-like, and the other one taken at ω = ω2,
which is negative, since the corresponding plasmon state is p-like:

S(qr + g′, qr + g, ω) = a∗(qr + g′, ω)a(qr + g, ω)δ(ω − ω1(qr + g′))
+a(qr + g′, ω)a∗(qr + g, ω)δ(ω − ω2(qr + g′)). (3.14)

Thus, for q = g/2, one ends up [81] with an s-like (lower) plasmon band, whose excitation
probability is given by

|al(g/2, ω)|2 ∼ 1/2[S(qr + g′, ω) + S(qr + g′, qr + g, ω)] (3.15)

and a p-like (upper) plasmon band, whose excitation probability is given by

|au(g/2, ω)|2 ∼ 1/2[S(qr + g′, ω)− S(qr + g′, qr + g, ω)] (3.16)

This situation is plotted in figure 15, where one can read both a plasmon gap of ∼1 eV and the
interesting fact that the lower plasmon band is broader than the upper plasmon band, opposite
to what one might expect in terms of plasmon damping, but in good agreement with predictions
of Daling et al [82]. It should be stressed that signatures of this plasmon gap could not be found
in a regular IXSS or EELS experiment, since the Si plasmons, even for q < qc (qc = plasmon
cut-off vector), are strongly damped due to interband transitions, so that their width is of the
order of 5 eV.
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Figure 15. Full squares, diagonal (D) response function −Im [ε−1(q, ω)]00; full circles, off-
diagonal (ND) response function −Im [ε−1(q, ω)]0g , both measured with q = g111/2; open circles
connected by dashed curves, lower plasmon band (D+ND)/2, and upper plasmon band (D−ND)/2
separated by 1 eV.

3.4. Plasmon Fano resonances

The existence of Umklapp processes, which lead to plasmon bands, can be proved in another
inelastic scattering experiment, where one is utilizing the interaction of the discrete Umklapp
plasmons, as shown in figure 16 for the repeated zone scheme of a simple two-plasmon
band model, with the continuum of particle–hole excitations in the q-range with q > qZB
(qZB = momentum belonging to the BZB). For general physical reasons such an interaction
between discrete excitations and a continuum of excitations should give rise to so-called Fano
resonances [83]. This can be demonstrated within the limits of a simple two-plasmon band
model, where the dielectric matrix of (3.4) and (3.5) reduces to a 2 × 2 matrix by taking into
account only one reciprocal lattice vector g �= 0, so that S(q, ω) can be expressed in the
following way for g′ = 0 [80]:

S(q, ω) = (h̄q2/4π2e2n)Im {(−1/εgg) + (εg0ε0g/ε
2
gg)[−ε−1(q, ω)]00} (3.17)

(the arguments of εgg and εg0 are suppressed).
This expression consists of two parts in the { } brackets. The first one represents the

particle–hole excitation spectrum in the range of the Umklapp plasmon. The second one
stands for the plasmon coupled to the particle–hole excitation by the factor εg0ε0g/ε

2
gg, which

is complex with negative real and imaginary parts. Since Im [−ε−1(q, ω)]00 is always positive
and Re [−ε−1(q, ω)]00 becomes negative for ω > ωp(q) (ωp = plasmon frequency), this
coupling term exhibits a valley–peak structure, typical for a Fano resonance. This valley–peak
structure superimposed on the well known particle–hole contribution was indeed found in
S(q, ω) measurements of Si with q ‖ [111] and q > qc around 18 eV [38, 84] (see figure 17),
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Figure 16. Plasmon band and electron–hole excitation continuum in the repeated zone scheme.
qBZ marks the Brillouin zone boundary, qc = plasmon cut-off vector.

Figure 17. Dynamic structure factor S(q, ω) of Si for q ‖ [111], q = 1.25 a.u. triangles,
measurement; dotted curve, two-plasmon-band model calculation within RPA; full curve, two-
plasmon-band calculation, local-field corrected.
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and of Li with q ‖ [110] and q > qc [85], where the latter measurements were compared with
calculations of the full dielectric matrix [86].

4. Resonant inelastic x-ray scattering (RIXS)

4.1. Basic relations

The relation between the DDCS and the dynamic structure factor, as given in equation (2.1),
is only valid as long as the incident energy is far from the binding energy of a core level. If the
incident energy is approaching such a binding energy, a second term of the DDSC, deduced
from the p·A term (A is the vector potential operator) of the interaction Hamiltonian, becomes
dominant, so that the DDSC reads [87]

d2σ/d	 dω2 ∼
∑
f

∣∣∣∣ ∑
m

〈f |e∗
2 · ∑

j pj exp(−iK2 · rj )|m〉〈m|e1 · ∑
j pj exp(iK1 · rj )|i〉

Em − Ei − h̄ω1 − i-m/2

∣∣∣∣
2

×δ(Ef − Ei − h̄ω) (4.1)

where |i〉, |f 〉 and |m〉 are the initial, final and an intermediate state of the scattering electron
system, respectively, with their corresponding energiesEi,Ef andEm, as sketched in figure 18.
-−1
m is the lifetime of the intermediate state. K1, ω1, e1 and K2, ω2, e2 are the wavevectors,

frequencies and polarization vectors of the incident and the scattered wave, respectively,
ω = ω1 − ω2. The summation j is over all electrons of the system.

Figure 18. Principle of resonant inelastic scattering.

Let the intermediate state |m〉 be a core hole with an excited electron in a quasi-continuum
of unoccupied states, and let the state |f 〉 be a hole in occupied valence or core states. Then
the interplay of the δ-function and the denominator of equation (4.1) shifts the energy of
the scattered photon to higher energies with increasing energy of the incident photon, due
to the finite lifetime -−1

m , where the shift depends linearly on the incident photon energy as
long as h̄ω1 < EB (EB = binding energy of the core electron involved in |m〉) and levels
out for h̄ω1 > EB . This shift is called the Raman shift and was found experimentally for
the first time by Eisenberger et al [13]. If, on the other hand, |m〉 is discrete, the linear
Raman shift persists over the whole range of the incident photon energy. Of course, the
spectral contribution of this discrete state |m〉 to the DDSC is modulated by the denominator
of equation (4.1).

This property of RIXS can be utilized to measure -m, the core-hole lifetime and to
emphasize the contributions of transitions |i〉 ⇒ |m〉 to the photon absorption cross section,
which are too weak to be detectable in conventional x-ray absorption spectroscopy (XAS).
Examples for these applications of RIXS are presented in subsection 4.2.

Equation (4.1) forces one to consider the absorption and the re-emission processes involved
as an undivided inelastic scattering process, where the initial and final states of the scattering
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electron system are the same as in a corresponding non-resonant inelastic scattering process,
but where the information about the participating electronic excitation, readable from the
DDSC, can be amplified by several orders of magnitude, as compared with non-resonant
scattering, due to the resonance denominator. A very important consequence of the coherence
of absorption and re-emission consists in the fact that momentum conservation holds for
the whole inelastic scattering process as first shown in [88, 89], so that RIXS can be used
for band structure determination. Examples for this application of RIXS will be shown in
subsection 4.3. However, besides momentum conservation, the conservation of spin can also
be claimed, which enables spin selective investigation of the unoccupied band structure by
utilizing an internal spin reference, as shown for the first time by Hämäläinen et al [90].
Examples of this application of RIXS will be offered in subsection 4.4. Finally, it must be
stressed that shakeup excitations can occur from |m〉, which lead to very interesting energy
loss spectra enhanced by resonance, as exemplified in subsection 4.5.

4.2. Core-level resonant Raman spectra

It was shown for the first time by Hämäläinen et al [91] that the cross section for a resonantly
excited KL transition (initial hole in the K-shell), which is derived by integrating the DDSC
of (4.1) with respect to ω2, and which can be measured by tuning the incident photon energy
across the K-edge, is given by

(dσ/d	)KL = [(EK + ωe)/4π
2h̄ω1]σK(EK + ωe) tan−1(-K/22E) (4.2)

where EK is the K-shell binding energy, ωe is the average energy of the ejected electron, σK
is the K-shell contribution to the photoelectric absorption, 2E is the incident energy relative
to the K-edge (2E = EK − h̄ω1) and -K is the K-shell hole width. The latter quantity can
experimentally be determined by utilizing (4.2): one has to measure the scattered intensity
into a scattering angle of nearly 90◦ by means of a solid-state detector, which integrates over
the energy distribution of the Kα− and Kβ− emission, turning the incident photon energy with
an energy width of ∼1 eV across the K-edge. The incident photons should be highly linearly
polarized (synchrotron radiation) in order to suppress, together with the 90◦ scattering angle,
the non-resonant scattering. In this way, -K of Cu, Zn and -LIII of Ho [91] and -LIII of Yb
and Ta [92] were determined with an accuracy of 0.1 eV.

It was first demonstrated by Hämäläinen et al [93] that by using a selected wavelength of
the resonantly scattered (re-emitted) radiation as a signal, which indicates the strength of the
absorption process when scanning the incident photon energy across an edge, the edge spectra
with their information about the density of unoccupied states are free from the influence of the
lifetime broadening of the excited core level. The total energy resolution of this type of edge
spectroscopy depends only on the energy resolution of the monochromator for the incident
beam, the energy resolution of the analyser and the lifetime of the core hole involved in the
re-emission process. This remarkable fact is again, like the Raman shift, a consequence of the
interplay of the δ-function and the denominator in (4.1).

If one performs, in each case for one incident photon energy below the excited core-
level binding energy, an energy analysis of the complete spectrum of the resonantly scattered
radiation originating from the re-emission from a core level, then these spectra often reveal
a multi-peak structure. Each peak can be attributed to the excitation into a certain set of
unoccupied levels of the conduction band, and due to their individual Raman shift the energy
distances of these peaks are equal to the differences of the corresponding excitation energies.
The intensity of each peak goes through resonance if the incident energy just reaches the
excitation energy of the corresponding set of unoccupied levels. Thus the trace of rather weak
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excitations as for instance quadrupolar excitations, which are not visible as distinct structures
in conventional absorption spectroscopy, can be found, as first demonstrated by Krisch et al
[94], who found evidence for a quadrupolar excitation channel at the LIII -edge of gadolinium,
which is not detectable in the conventional x-ray absorption spectroscopy. A more extensive
study of this quadrupolar channel at the LIII -edge of a series of rare earth compounds has
been performed by Bartolome et al [95]. As an example of such a series of multi-peak spectra
of inelastically scattered photons, the Kα−

1
spectra of Cu in CuO for incident photon energies

between 8977 and 8984 eV, all below the K-shell binding energy of Cu, EK = 8985 eV, are
presented in figure 19 [96]. The peak at the highest energy of the scattered photons can be
attributed to a quadrupolar 1s → 3d transition and shows resonance at E0 = 8979.5 eV. The
other two peaks are due to dipolar transitions to the 1s3d94p and to the charge transfer state
1s3d10L4p, where 1s and L denote a core hole and an oxygen ligand hole, respectively.

Figure 19. Cu Kα1 fluorescence spectra of Cu for increasing excitation energies as indicated (in
eV), all below the Cu K-shell binding energy (8985 eV).

4.3. Bloch-k selective RIXS

As first shown by Johnson and Ma [89] on diamond and by Miyano et al [97] on Si, in both
cases in the soft x-ray regime, and by Enkisch et al [98] on NiAl alloy in the hard x-ray regime,
the shape of the resonantly excited valence fluorescence spectra from single crystals strongly
depends on both the energy of the incident photons and the direction as well as the amount of
the transferred momentum q. As shown in a thorough treatment by Ma [99], this behaviour
of the resonantly excited fluorescence can be traced back to momentum conservation within
the resonant inelastic scattering process by making full use of the coupling of absorption and
re-emission via the intermediate state as documented in (4.1). By treating the RIXS process
as a transition from the ground state into the intermediate state, consisting of a hole in the core
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state |c〉 with energy Ec, and an excited electron in the Bloch state |ke〉 with energy E(ke),
followed by the decay of the intermediate state by transition of a valence electron from the
Bloch state |kh〉 and energy E(kh) to the core hole, one ends up with

d2σ/d	 dω2 =
∑
ke,kh

|Mkc,khMkc,ke |2δ(E(ke)− Ec − h̄ω1)δg,(K1−K2+kh−ke)

×δ(E(kh)− Ec − h̄ω2) (4.3)

where the core state was represented in a tight-binding ansatz (R = lattice transition vector,
φc atomic wavefunction),

|c〉 =
∑
R

exp(ikc · R)φc(r − R) (4.4)

Mkc,kh denotes the matrix element

Mkc,kh = 〈φc|e∗
2 · p exp(−iK2 · r)|kh〉 (4.5)

andMkc,ke the matrix element

Mkc,ke = 〈ke|e1 · p exp(iK1 · r)|φc〉. (4.6)

Equation (4.3) reflects both the energy conservation connected with the absorption and the re-
emission process and the crystal momentum conservation, which governs the whole resonant
inelastic scattering processes, so that the momentum transfer q = K1−K2 must be equal to the
vector difference ke−kh between the Bloch vectors of the excited electron and that of the hole
left behind, modulo a reciprocal lattice vector g. This property makes RIXS Bloch-k-vector
selective, as demonstrated in figure 20 related to a band structure calculation of NiAl [98]: the
incident photon energy h̄ω1 defines that part of the unoccupied band structure which can be
occupied by the excited electron. The energy width of that part is determined by the lifetime
broadening of the core level. Bloch-k-space regions with high DOS are preferably involved in
the excitation, in figure 20 the R-point. Then a distinct Bloch-k-space region, separated by the
vector of the momentum transfer q from the former k-space region, is preferably contributing
to the re-emission from the occupied valence band. A series of constant-q RIXS spectra of
NiAl measured for incident photon energies by E above the NiK-edge and calculated for the
Ni site are shown, as an example, in figure 21. It has been shown by several authors [100] how
band structure information can be drawn from Bloch-k-selective RIXS spectra.

In contrast to angle-resolved photoelectron spectroscopy (ARPES), which exhibits a
similar Bloch-k-vector selectivity, RIXS is both element specific, offering thus a higher degree
of selectivity for compounds, and symmetry selective, since the matrix elements (4.5) and (4.6)
prefer certain symmetries of the conduction and of the valence band states due to the strong
preference of dipole transitions.

However, it is a shortcoming of RIXS, when compared with ARPES, that relaxation
processes in the intermediate state can partly abolish the Bloch-k-vector selectivity, where the
relaxation can either be due to Coulomb interaction between the core hole and the excited
electron as discussed by van Veenendaal and Carra [101], or, as shown in [100], by electron–
phonon or electron–electron scattering. The electron–phonon contribution to relaxation is
mainly determined by the ratio of the core hole decay rateRc and the electron–phonon scattering
rate Rph, resulting in a k-selective fraction f [100]

f = Rc/(Rc + Rph). (4.7)

If one compares soft with hard x-ray RIXS, the latter has a much higher f according to (4.7)
since Rc � Rph, but the large Rc of the core hole excited by hard x-rays causes a rather large
broadening of the spectra as indicated in figure 20. On the other hand, hard x-ray RIXS probes
the real bulk rather than the part of the sample near the surface, and offers the momentum
transfer q as an additional degree of freedom in the hand of the experimentalist.
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Figure 20. Bloch-k-selective RIXS demonstrated at the Ni-site projected LAPW calculated band
structure of NiAl as described in the text. The diameter of the open circles is proportional to the
partial p-state density at the Ni site.

4.4. Spin selective RIXS, internal spin reference

It was first shown by Hämäläinen et al [90] that RIXS can be used to investigate the DOS
of unoccupied states spin selectively. This effect is demonstrated schematically in figure 22
for the case of the resonantly excited Eu Lβ2,15 (2p3/24d) emission in EuO. The Eu Lβ2,15

emission consists of a main line and a satellite, 23 eV lower in energy than the main line.
One knows from atomic multiplet calculations and measurements of the circular dichroism of
the Eu Lβ2,15 emission [102] that, due to the exchange interaction between 4f and 4d states,
those atomic multiplets of the 4f74d9 final-state configuration, which correspond to the main
line emission, have a spin orientation mostly parallel to the spin of the 4f electrons (majority
spin, spin up), whereas the satellite can be traced back to multiplets of the 4f74d9 final-state
configuration with nearly pure minority spin (spin down), as shown in figure 22 in a rather
simple atomic picture. Let the incident photon excite an electron from the Eu 2p3/2 core level
into the 5d conduction band, where the spin of this electron might be antiparallel (spin down)
to the aligned 4f spins of Eu, which acts as an internal (atomic) spin reference. Since we
are claiming spin conservation for the whole resonant scattering process, the core hole can
be filled up only by an electron with spin down, so that the emission is into the main line.
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Figure 21. Constant-q RIXS spectra of NiAl with q ‖ [110]. Both the incident photon energy
E and the energy of the valence band fluorescence have their zero at the Ni 1s binding energy.
Bold full curve, experiment; thin full curve, LAPW calculation; dashed curve, estimated shakeup
satellite.

If, on the other hand, an electron from the 2p3/2 core level is excited into a spin-up state
of the unoccupied 5d band, the core hole must be filled up by an electron with spin up, so
that the emission is into the satellite. Therefore, by setting the analyser energy on the main
line and by scanning the incident energy over the Eu LIII edge one probes the 5d spin down
DOS at the Eu atom, whereas, with the analyser energy on the satellite, the spin-up 5d DOS
is investigated. Of course, this simplified description neglects the energy dependence of the
contributing dipole matrix elements (4.5) and (4.6). Figure 23 shows the result of such a
measurement on EuO at room temperature, this means in the paramagnetic phase [103]. It
should be stressed that, contrary to measurements utilizing the magnetic circular dichroism
(MCD) [104], where magnetically ordered samples are necessary, this spin selective probing
of the unoccupied local DOS does not need a spin ordered state, since the spin orientation of
the state under investigation is related to an internal atomic spin reference, here the aligned
4f spins of the Eu ion. According to the application of the so-called s(d)–f model [105]
(coupling of the s(d)-type conduction electrons with the localized magnetic moments of the
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Figure 22. (a) A simple atomic picture of the resonantly excited main-line (ML) Eu Lβ2,15 emission
of EuO, demonstrating the effect of the internal spin reference offered by the spin polarization of
the 4f-level. (b) The same as (a) but for satellite (SAT) Eu Lβ2,15 emission.

f-type electrons by exchange interaction) to the ferromagnetic semiconductor EuO by Nolting
et al [106], the measured shift2E of 0.7 eV between the spin-down and spin-up edges can be
directly attributed to the coupling constant g of the s(d)–f model via

2E = gS, (4.8)

where S is the total spin of the 4f electrons (S = 7/2), thus ending up with g = 0.2 eV, in
good agreement with the results of the measured so-called red-shift of the excitation edge of
the optical 4f75d0 → 4f65d1 transition [107].

Further applications of this technique to MnP [108], and a corresponding theoretical
analysis of spin selective RIXS spectra of MnO and MnF2 [109] should be mentioned,
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Figure 23. Open squares, integrated intensity of the EuO mean line Eu Lβ2,15 emission as a
function of the excitation energy for the unoccupied 5d spin-down DOS (open squares) and for the
unoccupied 5d spin-up DOS (full squares).

Figure 24. Shakeup processes in the intermediate state. The double line is the propagator of the
core hole, the single line is the particle propagator, the dashed line means Coulomb interaction with
the surrounding medium producing a particle–hole pair excitation.

especially since in [108] the comparison between the spin selective RIXS spectra with the MCD
spectra, measured both at the Mn K-edge, allows the determination of the energy dependence
of the Fano factor [104].
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4.5. Shakeup processes in the intermediate state

It has been stressed by Platzman and Isaacs [110] that shakeup processes in the intermediate
state, as sketched by the diagram of figure 24, open a new window for the investigation of
electronic excitations. Abbamonte et al [111] have treated such a shakeup processes in third-
order perturbation theory interpreting RIXS spectra of La2CuO4 taken with the incident energy
tuned near the Cu K absorption edge. Applied to this system, the diagram of figure 24 stands
for the following processes. The incident photon creates a virtual 1s4p pair on a copper
site (1s means a 1s core hole), which is very localized. This pair is bound as an exciton by
the Coulomb interaction, takes up the momentum of the incident photon and scatters off the
valence electron system producing an excitation, for example a particle–hole excitation. When
the exciton recombines, the emitted photon reflects the energy and momentum imparted to the
system. Therefore, the scattering amplitude has to be calculated in third-order perturbation
theory (second order in p · A and first order in the Coulomb interaction) as follows:

Sif =
∑
1s4p

MemMCoulMabs/[(E2 − E1s4p + i-K/2)(E1 − E1s4p + i-K/2)] (4.9)

where E1 and E2 are the energies of the incident and the scattered photons, respectively, the
sum is over all states of the 1s hole and 4p electron,E1s4p is their energy and is -−1

K the lifetime
of the 1s hole. Mem is the matrix element of the re-emission process,Mabs the matrix element of
the absorption process andMCoul the matrix element, which governs the Coulomb interaction
induced excitation by the intermediate state and which reads for the case exemplified

MCoul =
∑

g

(4πe2/|q + g|2)F1s4p(q + g, e0)〈f |ρv·q+g|i〉 (4.10)

where F1s4p ((k) is the x-ray static structure factor of the 1s4p exciton, 〈f | and 〈i| denote the
final and the initial states, and ρv·q+g is the valence part of the many body density operator.
Equation (4.9) along with (4.10) indicates that there are two signatures, which give evidence
for a shakeup process as described above:

(1) the double resonance denominator in (4.9) gives rise to deviations from the simple linear
relationship between incident energy and scattered photon energy in a RIXS process
for incident energies smaller than the threshold, as depicted in subsection 4.1 under the
designation Raman shift;

(2) MCoul of (4.10) means that the intensity of the RIXS spectra brought about by processes
described by (4.9) must have a characteristic dependency on q.

As an example, we plot in figure 25 a series of RIXS spectra of CuO for different incident
photon energies tuned near the Cu K-edge as a function of energy loss. γ is the angle between
the surface normal of the sample and the incident beam and determines the angles between the
polarization vector of the incident beam and the two types of CuO planes in the monoclinic
CuO crystal and, therefore, the ratio of 1s4pσ to 1s4pπ excitons in (4.9). Referring to the cluster
calculations of Eskes et al [112] we attribute the peak structure, marked by a bar, between
the (quasi)elastically scattered line and the Cu-valence band emission to a satellite due to a
shakeup transition from the b1g ground state to a high-energy a1g excited state. It is clearly
visible in figure 25 that the peak position of this structure is incident energy dependent and
does not exhibit the simple Raman-shift behaviour described in subsection 4.1, which should
give a non-varying position if plotted as a function of energy loss. We ascribe this behaviour
to the double resonance denominator of (4.9), so that a treatment in third-order perturbation
theory seems to be advisable. Moreover, looking at the satellite for a given incident energy
but measured with different amounts (and directions) of momentum transfer q, as shown in



Electronic excitation investigated by IXSS 7587

Figure 25. Constant-q resonant energy loss spectrum of CuO for different incident photon energies
as indicated, tuned near the Cu K-edge. The bars mark the peak position of the shakeup satellite;
γ = 54◦.

figure 26, one recognizes a big difference in intensity if we normalize to the intensity of the
valence band emission. This difference can be traced back to the q dependence of the Coulomb
matrix element (4.10), again a hint that it is Coulomb interaction induced excitation by the
intermediate state, which has to be treated in third-order perturbation theory.

If one accepts this interpretation of structures in the RIXS spectra, resonant inelastic x-ray
scattering opens a unique possibility to investigate element-specific and resonantly-enhanced
electronic excitations and especially their dispersion, since, as stated above, the full momentum
q = K1 − K2 is imparted to the shakeup excitation, if other relaxation processes such as
phonon emission are neglected. Thus Tsutsui et al [113] have proposed the utilization of this
momentum dependence of shakeup satellites of RIXS spectra to probe the charge gap in a
Mott insulator (insulating cuprates) through the creation of a hole in the occupied Zhang–Rice
band (ZRB) [114], thereby promoting an electron across the gap to the unoccupied upper
Hubbard band (UHB) with a finite momentum transferred to the system tunable in size and
direction. These experiments have been performed by Hasan et al [115] and have shown,
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Figure 26. Dependence of the CuO shakeup peak intensity on the value of the indicated momentum
transfer q, measured with constant incident photon energy. The spectra are normalized to the
intensity of the CuO valence band emission.

in good agreement with the predictions of [114], a partial doublet nature of the excitations
and a strongly anisotropic dispersion. The results of these experiments could help to fill the
gaps of knowledge about the momentum-resolved electronic structure of the UHB, which is of
importance for understanding the physics of n-type superconductors, since the doped electrons
occupy the UHB.

RIXS experiments, performed somewhat earlier than those mentioned above, and which
were also devoted to the investigation of spectral features due to excitations connected with
charge transfer in NiO (the pioneering experiment of Kao et al [116]) and Nd2CuO4 [117, 118]
have been interpreted in another way even if the physics behind them seems not to be so
different to the experiments interpreted in third-order perturbation theory. The authors did not
see the need to treat the scattering process in third-order perturbation theory, but remained in
second order, thus having only a single resonance denominator and a simple linear Raman
shift. Their interpretation of charge transfer features in the RIXS spectra is based on the
Anderson impurity model [119], where, for the case of the cuprates, the Cu 3d9 configuration
hybridizes with 3d10L, where L represents an O 2p ligand hole, so that the ground state is
the bonding state with about 60% of the 3d9 configuration whereas the antibonding state,
which is 2 apart in energy from the ground state, is mainly 3d10L with a continuous band
between them. If in the intermediate state a Cu 1s electron is excited to the Cu 4pπ/σ
conduction band, the core hole potential reverses the balance between the 3d9 and the 3d10L
configurations, so that the bonding state with predominantly 1s3d10L4p is lower in energy
than the antibonding state 1s3d94p. If either of these intermediate states decays into the
antibonding excited states an energy loss of 2 would result. This energy loss is found in
the experiment. Since both the energy shift of the RIXS spectra with the incident energy
is simple Raman like and no q-dependence of the intensity of the RIXS spectra could be
found [118] in the above-mentioned cases, the interpretation of the spectra within the limits
of the second-order perturbation theory seems to be conclusive. It remains a matter of
debate whether different materials under investigation need different theoretical treatments
or not.
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[108] de Groot F M F, Pizzini S, Fontaine A, Hämäläinen K, Kao C-C and Hastings J B 1995 Phys. Rev. B 51 1045
[109] Soldatov A V, Ivanchenko T S, Kovtun A P, Dealla Longa S and Bianconi A 1995 Phys. Rev. B 52 11 757
[110] Platzman P M and Isaacs E D 1998 Phys. Rev. B 57 107
[111] Abbamonte P, Burns C A, Isaacs E D, Platzman P M, Miller L L, Cheong S W and Klein M V 1999 Phys. Rev.

Lett. 83 860
[112] Eskes H, Tjeng L H and Sawatzky G A 1990 Phys. Rev. B 41 288
[113] Tsutsui K, Tohyama T and Maekawa S 1999 Phys. Rev. Lett. 83 3705
[114] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
[115] Hasan M Z, Isaacs E D, Shen Z-X, Miller L L, Tsutsui K, Tohyama T and Maekawa S 2000 Science 288 1811
[116] Kao C-C, Caliebe W A L, Hastings J B and Gillet J-M 1996 Phys. Rev. B 54 16 361
[117] Hill J P, Kao C-C, Caliebe W A L, Matsubara M, Kotani A, Peng J L and Greene R L 1998 Phys. Rev. Lett. 80

4967
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